Life Skills Learned In Math Class
One of the hardest questions for many math teachers to answer in a way that is relevant to students is: “why do I need to know this?” “For the next course you take”, the easiest answer in many cases, does not answer the question that was usually being asked. My answers to this question obviously depend on the topic being studied at moment, and I don’t have “good” answers for all topics… but here is my list of key life skills I learned directly or indirectly from math class, with some examples of situations where I find them indispensable.
Sums and differences
How much will all three of these items cost? How much more would I have to spend to get that one instead of this one?
Integer products and quotients
How much would three of this one item cost? Which is cheaper per unit: the 10oz or the 16oz size (when cost per unit is not displayed)? If our four person band will receive $160 for this gig, how much will my share be?
Decimal products (percentages, multiplication by reciprocals)
What dollar difference will a 3% raise in my weekly paycheck represent? How much am I saving if this item is discounted by 20%? How much should I tip the server at the restaurant?
Mental Math Skills
The above calculations usually arise when I do not have a calculator handy
Algebra
Mastery of and comfort with the rules of algebra allows me to re-arrange problems to make them easier to solve… particularly when I am trying to work them without a calculator or something to write on. 17 x 12 is much easier to calculate in my head if I think of it as
(17)(10 + 2) = (17)(10) + (17)(2) = 170 + 34 = 204
Algebra has also taught me to be comfortable tackling problems that will take many steps to solve, by first breaking the problem down into smaller tasks or goals, then solving each in turn (sort of like writing a 20 page research paper). Or, if that approach does not work, to try working backwards from the desired solution… or perhaps even starting “in the middle”, and working from there to both the start and the end. These problem solving approaches are useful in many walks of life, even non-quantitative ones.
Word Problems
Word problems often present information in a less structured, more true-to-life way. I have to think a bit to figure out what information is relevant to the question being asked, along with how best to use it. They give me better practice determining what mathematical tools might be relevant to the situation than problems which are already expressed either entirely in numerical form or as equations. In other words, they help me learn to better apply what I know about math to the world around me.
Geometric Proofs
Deductive reasoning is very broadly useful (ask any lawyer), and influences all of my attempts at communication greatly. It was easiest for me to grasp as a concept in the context of developing geometric proofs, which provide a visual aid to the deductive part of the reasoning. “Problem solving” involves tackling problems that are new to me, which I have the tools to solve, but for which I do not know “where to start” from prior experience. Most students struggle with this process as they learn it, and I see proofs as an easier place to learn this challenging and valuable skill than others.
No comments:
Post a Comment